Convergence to equilibria in discrete population models
نویسنده
چکیده
For a family of difference equations xnþ1 1⁄4 axn þ f ðxn2kÞ; n 1⁄4 0; 1; . . .;wherea [ ð0; 1Þ; k [ {1; 2; . . .}; and f : 1⁄20;1Þ! ð0;1Þ is continuous and decreasing, we find sufficient conditions for the convergence of all solutions to the unique positive equilibrium. In particular, we improve, up to our knowledge, all previous results on the global asymptotic stability of the equilibrium in the particular cases of the discrete Mackey– Glass and Lasota–Wazewska models in blood-cells production.
منابع مشابه
Dynamic Systems of Social Interactions
We state conditions for existence and uniqueness of equilibria in dynamic microeconomic models with an infinity of locally and globally interacting agents. Agents face repeated discrete choice problems. Their utility depends on the actions of some designated neighbors and the average choice throughout the whole population. We show that the dynamics on the level of aggregate behavior can be desc...
متن کاملHYBRID COLLIDING BODIES OPTIMIZATION AND SINE COSINE ALGORITHM FOR OPTIMUM DESIGN OF STRUCTURES
Colliding Bodies Optimization (CBO) is a population-based metaheuristic algorithm that complies physics laws of momentum and energy. Due to the stagnation susceptibility of CBO by premature convergence and falling into local optima, some meritorious methodologies based on Sine Cosine Algorithm and a mutation operator were considered to mitigate the shortcomings mentioned earlier. Sine Cosine Al...
متن کاملLearning Nash Equilibria in Congestion Games
We study the repeated congestion game, in which multiple populations of players share resources, and make, at each iteration, a decentralized decision on which resources to utilize. We investigate the following question: given a model of how individual players update their strategies, does the resulting dynamics of strategy profiles converge to the set of Nash equilibria of the one-shot game? W...
متن کاملA Note on the Convergence of the Homotopy Analysis Method for Nonlinear Age-Structured Population Models
In this paper, a theorem is proved which presents the series solution obtained from the homotopy analysis method is convergent to the exact solution of nonlinear age-structured population models.
متن کاملOnline Learning of Nash Equilibria in Congestion Games
We study the repeated, nonatomic congestion game, in which multiple populations of players share resources and make, at each iteration, a decentralized decision on which resources to utilize. We investigate the following question: given a model of how individual players update their strategies, does the resulting dynamics of strategy profiles converge to the set of Nash equilibria of the one-sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004